Lecture 5
 PCTL Model Checking for DTMCs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic model checking

Overview

- PCTL model checking for DTMCs
- Computation of probabilities for PCTL formulae
- next
- bounded until
- (unbounded) until
- Solving large linear equation systems
- direct vs. iterative methods
- iterative solution methods

PCTL

- PCTL syntax:
ψ is true with probability $\sim p$
$-\phi::=$ true $|\mathrm{a}| \phi \wedge \phi|\neg \phi| \mathrm{P}_{\sim p}[\Psi] \quad$ (state formulae)

(path formulae)
- where a is an atomic proposition, $\mathrm{p} \in[0,1]$ is a probability bound, $\sim \in\{<,>, \leq, \geq\}, k \in \mathbb{N}$
- Remaining operators can be derived (false, $\vee, \rightarrow, F, G, \ldots$)
- hence will not be discussed here

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
- inputs: DTMC $\mathrm{D}=\left(\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}\right)$, PCTL formula ϕ
- output: $\operatorname{Sat}(\phi)=\{s \in S \mid s \vDash \phi\}=$ set of states satisfying ϕ
- What does it mean for a DTMC D to satisfy a formula ϕ ?
- often, just want to know if $s_{\text {init }} \vDash \phi$, i.e. if $s_{\text {init }} \in \operatorname{Sat}(\phi)$
- sometimes, want to check that $s \vDash \phi \forall s \in S$, i.e. $\operatorname{Sat}(\phi)=S$
- Sometimes, focus on quantitative results
- e.g. compute result of $P_{=\text {? }}$ [F error]
- e.g. compute result of $P_{=?}[F \leq k$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ϕ
- example: $\phi=(\neg$ fail \wedge try $) \rightarrow \mathrm{P}_{>0.95}$ [\neg fail U succ]
- For the non-probabilistic operators:
- Sat(true) = S
$-\operatorname{Sat}(\mathrm{a})=\{\mathrm{s} \in \mathrm{S} \mid \mathrm{a} \in \mathrm{L}(\mathrm{s})\}$
$-\operatorname{Sat}(\neg \phi)=S \backslash \operatorname{Sat}(\phi)$
$-\operatorname{Sat}\left(\phi_{1} \wedge \phi_{2}\right)=\operatorname{Sat}\left(\phi_{1}\right) \cap \operatorname{Sat}\left(\phi_{2}\right)$
- For the $\mathrm{P}_{\sim \mathrm{p}}[\Psi]$ operator:
- need to compute the probabilities Prob(s, ψ)

DP/Probabilistic Model Checking, Michaelmas 2011

Probability computation

- Three temporal operators to consider:
- Next: $\mathrm{P}_{\sim p}[\mathrm{X} \phi]$
- Bounded until: $P_{\sim p}\left[\phi_{1} U \leq k \phi_{2}\right]$
- adaptation of bounded reachability for DTMCs
- Until: $P_{\sim p}\left[\phi_{1} U \phi_{2}\right]$
- adaptation of reachability for DTMCs
- graph-based "precomputation" algorithms
- techniques for solving large linear equation systems

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
$-\operatorname{Sat}\left(P_{\sim p}[X \phi]\right)=\{s \in S \mid \operatorname{Prob}(s, X \phi) \sim p\}$
- need to compute $\operatorname{Prob}(\mathrm{s}, \mathrm{X} \phi)$ for all $\mathrm{s} \in \mathrm{S}$
- Sum outgoing probabilities for transitions to ϕ-states
$-\operatorname{Prob}(\mathrm{s}, \mathrm{X} \phi)=\Sigma_{\mathrm{s}^{\prime} \in \operatorname{Sat}(\phi)} \mathrm{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$
- Compute vector $\operatorname{Prob}(X \phi)$ of probabilities for all states s

$-\underline{\operatorname{Prob}}(\mathrm{X} \phi)=\mathbf{P} \cdot \Phi$
- where ϕ is a $0-1$ vector over S with $\phi(s)=1$ iff $s \vDash \phi$
- computation requires a single matrix-vector multiplication

PCTL next - Example

- Model check: $\mathrm{P}_{\geq 0.9}[\mathrm{X}(\neg$ try \vee succ) $]$

$$
\begin{aligned}
& \text { - Sat }(\neg \text { try } \vee \text { succ })=(\text { S } \backslash \text { Sat(try })) \cup \text { Sat(succ) }) \\
& =\left(\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \backslash\left\{\mathrm{s}_{1}\right\}\right) \cup\left\{\mathrm{s}_{3}\right\}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}
\end{aligned}
$$

$$
-\underline{\operatorname{Prob}}(X(\neg \operatorname{try} \vee \operatorname{succ}))=\mathbf{P} \cdot \underline{(\neg \operatorname{try} \vee \operatorname{succ})}=\ldots
$$

$$
=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0.01 & 0.01 & 0.98 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.99 \\
1 \\
1
\end{array}\right]
$$

- Results:

$-\underline{\operatorname{Prob}}(\mathrm{X}(\neg$ try \vee succ $))=[0,0.99,1,1]$
$-\operatorname{Sat}\left(P_{\geq 0.9}[X(\neg\right.$ try \vee succ $\left.)]\right)=\left\{s_{1}, s_{2}, s_{3}\right\}$

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL $U \leq k$ operator
$-\operatorname{Sat}\left(P_{\sim p}\left[\phi_{1} U \leq k \phi_{2}\right]\right)=\left\{s \in S \mid \operatorname{Prob}\left(s, \phi_{1} U \leq k \phi_{2}\right) \sim p\right\}$
- need to compute $\operatorname{Prob}\left(\mathrm{s}, \phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}\right.$) for all $\mathrm{s} \in \mathrm{S}$
- First identify (some) states where probability is trivially $1 / 0$
- Syes $^{\text {yen }}=\operatorname{Sat}\left(\phi_{2}\right)$
$-S^{\text {no }}=S \backslash\left(\operatorname{Sat}\left(\phi_{1}\right) \cup \operatorname{Sat}\left(\phi_{2}\right)\right)$

PCTL bounded until for DTMCs

- Let:

$$
\begin{aligned}
& -S^{\text {yes }}=\operatorname{Sat}\left(\phi_{2}\right) \\
& -S^{\text {no }}=\operatorname{S} \backslash\left(\operatorname{Sat}\left(\phi_{1}\right) \cup \operatorname{Sat}\left(\phi_{2}\right)\right)
\end{aligned}
$$

- And let:

$$
-S ?=S \backslash\left(\text { Syes }^{?} \cup S^{\text {no }}\right)
$$

- Compute solution of recursive equations:
$\operatorname{Prob}\left(s, \phi_{1} U^{U^{s k}} \phi_{2}\right)=\left\{\begin{array}{cl}1 & \text { if } s \in S^{\text {yes }} \\ 0 & \text { if } s \in S^{\text {no }} \\ 0 & \text { if } s \in S^{?} \text { and } k=0 \\ \sum_{s \in S} P\left(s, s^{\prime}\right) \cdot \operatorname{Prob}\left(s^{\prime}, \phi_{1} U^{\leq k-1} \phi_{2}\right) & \text { if } s \in S^{?} \text { and } k>0\end{array}\right.$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\operatorname{Prob}\left(\phi_{1} U \leq k \phi_{2}\right)$
- i.e. probabilities Prob(s, $\left.\phi_{1} U \leq k \phi_{2}\right)$ for all $s \in S$
- Iteratively define in terms of matrices and vectors
- define matrix P^{\prime} as follows: $P^{\prime}\left(s, s^{\prime}\right)=P\left(s, s^{\prime}\right)$ if $s \in S^{?}$, $P^{\prime}\left(s, s^{\prime}\right)=1$ if $s \in$ S $^{\text {yes }}$ and $s=s^{\prime}, P^{\prime}\left(s, s^{\prime}\right)=0$ otherwise
$-\underline{\operatorname{Prob}}\left(\phi_{1} U \leq 0 \phi_{2}\right)=\Phi_{2}$
$-\underline{\operatorname{Prob}}\left(\phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}\right)=\mathbf{P}^{\prime} \cdot \underline{\operatorname{Prob}}\left(\phi_{1} \mathrm{U} \leq \mathrm{k}-1 \phi_{2}\right)$
- requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
$-\underline{\operatorname{Prob}}\left(\phi_{1} U^{\leq k} \phi_{2}\right)=\left(P^{\prime}\right)^{k} \cdot \Phi_{2}$ and compute $\left(P^{\prime}\right)^{k}$ in $\log _{2} k$ steps
- but this is actually inefficient: $\left(P^{\prime}\right)^{k}$ is much less sparse than P^{\prime}

PCTL bounded until - Example

- Model check: $P_{>0.98}\left[F^{\leq 2}\right.$ succ] $\equiv P_{>0.98}\left[\right.$ true $U^{\leq 2}$ succ]
- Sat (true) $=\mathrm{S}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~S}_{3}\right\}$, Sat(succ) $=\left\{\mathrm{s}_{3}\right\}$
- Syes $^{\text {y }}=\left\{\mathrm{s}_{3}\right\}, \mathrm{S}^{\mathrm{no}}=\varnothing, \mathrm{S}^{?}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right\}, \mathbf{P}^{\prime}=\mathbf{P}$
$-\underline{\text { Prob }}($ true $U \leq 0$ succ) $=\underline{\text { succ }}=[0,0,0,1]$
$\underline{\operatorname{Prob}(t r u e} U^{\leq 1}$ succ) $=P^{\prime} \cdot \underline{P r o b}\left(\right.$ true $U^{\leq 0}$ succ) $=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 0.98 \\ 0 \\ 1\end{array}\right]$
$\underline{\text { Prob }}\left(\right.$ true $U^{\leq 2}$ succ) $=P^{\prime} \cdot \underline{\text { Prob }}\left(\right.$ true $U^{\leq 1}$ succ $)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 0.98 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}0.98 \\ 0.9898 \\ 0 \\ 1\end{array}\right]$
$-\operatorname{Sat}\left(\mathrm{P}_{>0.98}\left[\mathrm{~F}^{\leq 2}\right.\right.$ succ $\left.]\right)=\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}$

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\left.\phi_{1} \mathrm{U} \phi_{2}\right)$ for all $s \in S$
- First, identify all states where the probability is 1 or 0

$$
\begin{aligned}
& -S^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \cup \phi_{2}\right]\right) \\
& -\operatorname{S}^{\text {no }}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\begin{array}{lll}
\phi_{1} & \left.\cup \phi_{2}\right]
\end{array}\right]\right.
\end{aligned}
$$

- Then solve linear equation system for remaining states
- Running example:

$$
\mathrm{P}_{>0.8}[\neg \mathrm{a} \mathrm{U} \mathrm{~b} \mathrm{]}
$$

Precomputation

- We refer to the first phase (identifying sets $S^{y e s}$ and $S^{\text {no }}$) as "precomputation"
- two algorithms: Prob0 (for S^{no}) and Probl (for Syes)
- algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
- ensures unique solution to linear equation system
- only need Prob0 for uniqueness, Probl is optional
- reduces the set of states for which probabilities must be computed numerically
- gives exact results for the states in Syes and Sno (no round-off)
- for model checking of qualitative properties ($P_{\sim p}[\cdot]$ where p is 0 or 1), no further computation required

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \mathrm{U} \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1} states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

sat $\left(\mathrm{B}_{1}{ }_{0}[\neg a \cup b]\right)$

Prob0 algorithm

```
\(\operatorname{Prob0}\left(\operatorname{Sat}\left(\phi_{1}\right), \operatorname{Sat}\left(\phi_{2}\right)\right)\)
1. \(\quad R:=\operatorname{Sat}\left(\phi_{2}\right)\)
2. done := false
3. while (done \(=\) false )
4. \(\quad R^{\prime}:=R \cup\left\{s \in \operatorname{Sat}\left(\phi_{1}\right) \mid \exists s^{\prime} \in R . \mathbf{P}\left(s, s^{\prime}\right)>0\right\}\)
5. if \(\left(R^{\prime}=R\right)\) then done \(:=\) true
6. \(\quad R:=R^{\prime}\)
7. endwhile
8. return \(S \backslash R\)
```

- Note: can be formulated as a least fixed point computation
- also well suited to computation with binary decision diagrams

Precomputation - Prob 1

- Probl algorithm to compute $S^{\text {yes }}=\operatorname{Sat}\left(P_{\geq 1}\left[\phi_{1} U \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing S^{no}
- this is equivalent to the set of states which have a non-zero probability of reaching $\mathrm{S}^{\text {no }}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

Prob1 algorithm

```
\(\operatorname{Prob} 1\left(S a t\left(\phi_{1}\right), \operatorname{Sat}\left(\phi_{2}\right), S^{n o}\right)\)
1. \(R:=S^{n o}\)
2. done := false
3. while (done \(=\) false \()\)
4. \(\quad R^{\prime}:=R \cup\left\{s \in\left(\operatorname{Sat}\left(\phi_{1}\right) \backslash \operatorname{Sat}\left(\phi_{2}\right)\right) \mid \exists s^{\prime} \in R . \mathbf{P}\left(s, s^{\prime}\right)>0\right\}\)
5. if \(\left(R^{\prime}=R\right)\) then done \(:=\) true
6. \(\quad R:=R^{\prime}\)
7. endwhile
8. return \(S \backslash R\)
```


Prob 1 explanation

PCTL until - linear equations

- Probabilities Prob(s, $\phi_{1} \cup \phi_{2}$) can now be obtained as the unique solution of the following set of linear equations
- essentially the same as for probabilistic reachability

$$
\operatorname{Prob}\left(s, \phi_{1} U \phi_{2}\right)=\left\{\begin{array}{cl}
1 & \text { if } s \in S^{\text {ves }} \\
0 & \text { if } s \in S^{\text {no }} \\
\sum_{s^{\prime} \in S} \mathrm{P}\left(s, s^{\prime}\right) \cdot \operatorname{Prob}\left(s^{\prime}, \phi_{1} U \phi_{2}\right) & \text { otherwise }
\end{array}\right.
$$

- Can also be reduced to a system in $\mid S$?| unknowns instead of $|S|$ where S ? $=S \backslash\left(S^{\text {yes }} \cup S^{\text {no }}\right)$

PCTL until - linear equations

- Example: $\mathrm{P}_{>0.8}[\neg \mathrm{a} \mathrm{U} \mathrm{b}]$

$$
\begin{gathered}
\mathrm{S}^{\mathrm{no}}= \\
\operatorname{Sat}\left(\mathrm{P}_{\leq 0}[\neg \mathrm{a} \cup \mathrm{~b}]\right)
\end{gathered}
$$

- Let $\mathrm{x}_{\mathrm{i}}=\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}, \neg \mathrm{a} U \mathrm{~b}\right)$

$x_{1}=x_{3}=0$
$x_{4}=x_{5}=1$
$x_{2}=0.1 x_{2}+0.1 x_{3}+0.3 x_{5}+0.5 x_{4}=8 / 9$
$x_{0}=0.1 x_{1}+0.9 x_{2}=0.8$
$\operatorname{Prob}(\neg \mathrm{a} \mathrm{U} \mathrm{b})=\underline{x}=[0.8,0,8 / 9,0,1,1]$
$\operatorname{Sat}\left(\mathrm{P}_{>0.8}[\neg \mathrm{aUb}]\right)=\left\{\mathrm{s}_{2}, \mathrm{~s}_{4}, \mathrm{~s}_{5}\right\}$

PCTL Until - Example 2

- Example: $\mathrm{P}_{>0.5}[\mathrm{G} \neg \mathrm{b}] \quad \mathrm{S}^{\text {no }}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}[\mathrm{Fb}]\right)$
- Prob($\left.\mathrm{s}_{\mathrm{i}}, \mathrm{G} \neg \mathrm{b}\right)$

$$
\begin{aligned}
& =1-\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}, \neg(\mathrm{G} \neg \mathrm{~b})\right) \\
& =1-\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{Fb}\right)
\end{aligned}
$$

- Let $\mathrm{x}_{\mathrm{i}}=\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{F}\right.$ b)
$x_{3}=0$ and $x_{4}=x_{5}=1$

$x_{2}=0.1 x_{2}+0.1 x_{3}+0.3 x_{5}+0.5 x_{4}=8 / 9$
$x_{1}=0.6 x_{3}+0.4 x_{0}=0.4 x_{0}$
$x_{0}=0.1 x_{1}+0.9 x_{2}=5 / 6$ and $x_{1}=1 / 3$
$\underline{\operatorname{Prob}}(G \neg b)=\underline{1}-\underline{x}=[1 / 6,2 / 3,1 / 9,1,0,0]$
$\operatorname{Sat}\left(\mathrm{P}_{>0.5}[\mathrm{G} \neg \mathrm{b}]\right)=\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}$

Linear equation systems

- Solution of large (sparse) linear equation systems
- size of system (number of variables) typically O(|S|)
- state space S gets very large in practice
- Two main classes of solution methods:
- direct methods - compute exact solutions in fixed number of steps, e.g. Gaussian elimination, L/U decomposition
- iterative methods, e.g. Power, Jacobi, Gauss-Seidel, ...
- the latter are preferred in practice due to scalability
- General form: $\mathbf{A} \cdot \underline{\mathrm{x}}=\underline{\mathrm{b}}$
- indexed over integers,
- i.e. assume $S=\{0,1, \ldots,|S|-1\}$

$$
\sum_{j=0}^{|S|-1} \mathbf{A}(i, j) \cdot \underline{x}(j)=\underline{b}(i)
$$

Iterative solution methods

- Start with an initial estimate for the vector \underline{x}, say $\underline{x}^{(0)}$
- Compute successive (increasingly accurate) approximations
- approximation (solution vector) at $\mathrm{k}^{\text {th }}$ iteration denoted $\underline{x}^{(k)}$
- computation of $x^{(k)}$ uses values of $x^{(k-1)}$
- Terminate when solution vector has converged sufficiently
- Several possibilities for convergence criteria, e.g.:
- maximum absolute difference

$$
\max _{i}\left|\underline{x}^{(k)}(i)-\underline{x}^{(k-1)}(i)\right|<\varepsilon
$$

- maximum relative difference

$$
\max _{i}\left(\frac{\left|\underline{x}^{(k)}(i)-\underline{x}^{(k-1)}(i)\right|}{\left|\underline{x}^{(k)}(i)\right|}\right)<\varepsilon
$$

Jacobi method

- Based on fact that:

$$
\sum_{j=0}^{|S|-1} \mathbf{A}(i, j) \cdot \underline{x}(j)=\underline{b}(i)
$$

For probabilistic model checking,
$\mathrm{A}(\mathrm{i}, \mathrm{i})$ is always non-zero

- can be rearranged as:

$$
\underline{x}(i)=\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}(j)\right) / \mathbf{A}(i, i)
$$

- yielding this update scheme:

$$
\underline{x}^{(k)}(i):=\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)
$$

Gauss-Seidel

- The update scheme for Jacobi:

$$
\underline{x}^{(k)}(i):=\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)
$$

- can be improved by using the most up-to-date values of $\underline{x}^{(j)}$ that are available
- This is the Gauss-Seidel method:
$\underline{x}^{(k)}(i):=\left(\underline{b}(i)-\sum_{j<i} \mathbf{A}(i, j) \cdot \underline{x}^{(k)}(j)-\sum_{j>i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)$

Over-relaxation

- Over-relaxation:
- compute new values with existing schemes (e.g. Jacobi)
- but use weighted average with previous vector
- Example: lacobi + over-relaxation

$$
\begin{aligned}
\underline{x}^{(k)}(i): & (1-\omega) \cdot \underline{x}^{(k-1)}(i) \\
& +\omega \cdot\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)
\end{aligned}
$$

- where $\omega \in(0,2)$ is a parameter to the algorithm

Comparison

- Gauss-Seidel typically outperforms Jacobi
- i.e. faster convergence
- also: only need to store a single solution vector
- Both Gauss-Seidel and Jacobi usually outperform the Power method (see least fixed point method from Lecture 2)
- However Power method has guaranteed convergence
- Jacobi and Gauss-Seidel do not
- Over-relaxation methods may converge faster
- for well chosen values of ω
- need to rely on heuristics for this selection

Model checking complexity

- Model checking of DTMC ($\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}$) against PCTL formula Φ complexity is linear in $|\Phi|$ and polynomial in $|S|$
- Size $|\Phi|$ of Φ is defined as number of logical connectives and temporal operators plus sizes of temporal operators
- model checking is performed for each operator
- Worst-case operator is $\mathrm{P}_{\sim \mathrm{p}}$ [$\Phi_{1} \mathrm{U} \Phi_{2}$]
- main task: solution of linear equation system of size $|\mathrm{S}|$
- can be solved with Gaussian elimination: cubic in |S|
- and also precomputation algorithms (max |S| steps)
- Strictly speaking, $\mathrm{U} \leq \mathrm{k}$ could be worse than U for large k
- but in practice k is usually small

Summing up...

- Model checking a PCTL formula ϕ on a DTMC
- i.e. determine set Sat(ϕ)
- recursive: bottom-up traversal of parse tree of ϕ
- Atomic propositions and logical connectives: trivial
- Key part: computing probabilities for $\mathrm{P}_{\sim p}$ [...] formulae
- X Φ : one matrix-vector multiplications
- $\Phi_{1} \mathrm{U} \leq \mathrm{k} \Phi_{2}$: k matrix-vector multiplications
- $\Phi_{1} \mathrm{U} \Phi_{2}$: graph-based precomputation algorithms + solution of linear equation system in at most $|\mathrm{S}|$ variables
- Iterative methods for solving large linear equation systems

