Lecture 5 PCTL Model Checking for DTMCs

Dr. Dave Parker

Department of Computer Science University of Oxford

Probabilistic model checking

Overview

- PCTL model checking for DTMCs
- Computation of probabilities for PCTL formulae
 - next
 - bounded until
 - (unbounded) until
- Solving large linear equation systems
 - direct vs. iterative methods
 - iterative solution methods

PCTL

PCTL syntax:

ψ is true with probability ~p

 $- \varphi ::= true \mid a \mid \varphi \wedge \varphi \mid \neg \varphi \mid P_{\neg p} [\psi]$

(state formulae)

(path formulae)

- where a is an atomic proposition, $p \in [0,1]$ is a probability bound, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- Remaining operators can be derived (false, ∨, →, F, G, ...)
 - hence will not be discussed here

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D=(S, s_{init}, P, L), PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula φ?
 - often, just want to know if $s_{init} = \phi$, i.e. if $s_{init} \in Sat(\phi)$
 - sometimes, want to check that $s \models \varphi \lor s \in S$, i.e. $Sat(\varphi) = S$
- Sometimes, focus on quantitative results
 - e.g. compute result of $P_{=?}$ [F error]
 - e.g. compute result of $P_{=?}$ [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of φ
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [¬fail U succ]
- For the non-probabilistic operators:
 - Sat(true) = S
 - Sat(a) = { s \in S | a \in L(s) }
 - $\operatorname{Sat}(\neg \Phi) = \operatorname{S} \setminus \operatorname{Sat}(\Phi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator:
 - need to compute the probabilities $Prob(s, \psi)$ for all states $s \in S$
 - $-\operatorname{Sat}(P_{\sim p}[\psi]) = \{ s \in S \mid \operatorname{Prob}(s, \psi) \sim p \}$

Probability computation

- Three temporal operators to consider:
- Next: P_{~p}[X ♠]
- Bounded until: $P_{\sim p}[\varphi_1 U^{\leq k} \varphi_2]$
 - adaptation of bounded reachability for DTMCs
- Until: $P_{\sim p}[\varphi_1 \cup \varphi_2]$
 - adaptation of reachability for DTMCs
 - graph-based "precomputation" algorithms
 - techniques for solving large linear equation systems

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
 - $\operatorname{Sat}(P_{\sim p}[X \varphi]) = \{ s \in S \mid \operatorname{Prob}(s, X \varphi) \sim p \}$
 - need to compute $Prob(s, X \varphi)$ for all $s \in S$
- Sum outgoing probabilities for transitions to φ-states
 - Prob(s, X ϕ) = $\Sigma_{s' \in Sat(\phi)}$ P(s,s')

- Compute vector Prob(X φ) of probabilities for all states s
 - $\underline{\mathsf{Prob}}(\mathsf{X} \; \boldsymbol{\varphi}) = \mathbf{P} \cdot \underline{\boldsymbol{\varphi}}$
 - where $\underline{\phi}$ is a 0-1 vector over S with $\underline{\phi}(s) = 1$ iff $s = \overline{\phi}$
 - computation requires a single matrix-vector multiplication

PCTL next - Example

- Model check: P_{>0.9} [X (¬try ∨ succ)]
 - Sat (\neg try \lor succ) = (S \ Sat(try)) \cup Sat(succ) = ({s₀,s₁,s₂,s₃} \ {s₁}) \cup {s₃} = {s₀,s₂,s₃}
 - Prob(X (\neg try \lor succ)) = P \cdot (\neg try \lor succ) = ...

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{bmatrix}$$

- Results:
 - $Prob(X (\neg try \lor succ)) = [0, 0.99, 1, 1]$
 - Sat($P_{\geq 0.9}$ [X (¬try ∨ succ)]) = {s₁, s₂, s₃}

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL U≤k operator
 - $\; Sat(P_{\sim p}[\; \varphi_1 \; U^{\leq k} \; \varphi_2 \;]) = \{ \; s \in S \mid Prob(s, \, \varphi_1 \; U^{\leq k} \; \varphi_2) \sim p \; \}$
 - need to compute $Prob(s, \phi_1 \cup U^{\leq k}, \phi_2)$ for all $s \in S$
- First identify (some) states where probability is trivially 1/0
 - $S^{yes} = Sat(\phi_2)$

 $- S^{no} = S \setminus (Sat(\phi_1) \cup Sat(\phi_2))$

PCTL bounded until for DTMCs

Let:

$$\begin{array}{l} - \ S^{yes} = Sat(\varphi_2) \\ - \ S^{no} = S \setminus (Sat(\varphi_1) \cup Sat(\varphi_2)) \end{array}$$

And let:

$$- S^? = S \setminus (S^{yes} \cup S^{no})$$

Compute solution of recursive equations:

$$Prob(s,\,\varphi_1\,U^{{\scriptscriptstyle \leq k}}\,\varphi_2) \,=\, \left\{ \begin{array}{c} 1 & \text{if } s\!\in\!S^{{\scriptscriptstyle yes}} \\ 0 & \text{if } s\!\in\!S^{{\scriptscriptstyle no}} \\ 0 & \text{if } s\!\in\!S^{{\scriptscriptstyle no}} \\ \sum_{s\!\in\!S} P(s,s')\!\cdot\!Prob(s',\varphi_1\,U^{{\scriptscriptstyle \leq k-1}}\,\varphi_2) & \text{if } s\!\in\!S^{{\scriptscriptstyle ?}} \text{ and } k=0 \\ \text{if } s\!\in\!S^{{\scriptscriptstyle ?}} \text{ and } k>0 \end{array} \right.$$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\underline{Prob}(\phi_1 \cup \bigcup_{k \in \mathbb{Z}} \phi_k)$
 - i.e. probabilities Prob(s, $\phi_1 \cup U^{\leq k} \phi_2$) for all $s \in S$
- Iteratively define in terms of matrices and vectors
 - define matrix P' as follows: P'(s,s') = P(s,s') if $s \in S^{?}$, P'(s,s') = 1 if $s \in S^{yes}$ and s=s', P'(s,s') = 0 otherwise
 - $\operatorname{\underline{Prob}}(\varphi_1 \mathsf{U}^{\leq 0} \varphi_2) = \underline{\varphi}_2$
 - $\underline{\mathsf{Prob}}(\varphi_1 \ \mathsf{U}^{\leq k} \ \varphi_2) = \mathbf{P'} \cdot \underline{\mathsf{Prob}}(\varphi_1 \ \mathsf{U}^{\leq k-1} \ \varphi_2)$
 - requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
 - $-\operatorname{\underline{Prob}}(\varphi_1\ U^{\leq k}\ \varphi_2)=(P')^k\cdot\underline{\varphi}_2$ and compute $(P')^k$ in $\log_2 k$ steps
 - but this is actually inefficient: (P')k is much less sparse than P'

PCTL bounded until - Example

- Model check: $P_{>0.98}$ [$F^{\leq 2}$ succ] $\equiv P_{>0.98}$ [true $U^{\leq 2}$ succ]
 - Sat (true) = $S = \{s_0, s_1, s_2, s_3\}$, Sat(succ) = $\{s_3\}$
 - $S^{yes} = \{s_3\}, S^{no} = \emptyset, S^? = \{s_0, s_1, s_2\}, P' = P$
 - <u>Prob</u>(true U≤0 succ) = <u>succ</u> = [0, 0, 0, 1]

$$\frac{\text{Prob}(\text{true O's Succ}) = \underbrace{\frac{\text{Succ}}{0} = \begin{bmatrix} 0, 0, 0, 1 \end{bmatrix}}{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{\text{Prob}}(\text{true } \ \mathsf{U}^{\leq 2} \ \mathsf{succ}) \ = \ \mathsf{P'} \cdot \underline{\text{Prob}}(\text{true } \ \mathsf{U}^{\leq 1} \ \mathsf{succ}) \ = \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.98 \\ 0.9898 \\ 0 \\ 1 \end{bmatrix}$$

- Sat(
$$P_{>0.98}$$
 [$F^{\leq 2}$ succ]) = { s_1, s_3 }

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2])$
 - $S^{no} = Sat(P_{<0} [\varphi_1 U \varphi_2])$
- Then solve linear equation system for remaining states
- Running example:

Precomputation

- We refer to the first phase (identifying sets Syes and Sno) as "precomputation"
 - two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - ensures unique solution to linear equation system
 - · only need Prob0 for uniqueness, Prob1 is optional
 - reduces the set of states for which probabilities must be computed numerically
 - gives exact results for the states in Syes and Sno (no round-off)
 - for model checking of qualitative properties ($P_{\sim p}[\cdot]$ where p is 0 or 1), no further computation required

Precomputation – Prob0

- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) \equiv Sat($E[\varphi_1 \cup \varphi_2]$)
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S

Prob0 algorithm

```
PROB0(Sat(\phi_1), Sat(\phi_2))

1. R := Sat(\phi_2)

2. done := false

3. while (done = false)

4. R' := R \cup \{s \in Sat(\phi_1) \mid \exists s' \in R \cdot P(s, s') > 0\}

5. if (R' = R) then done := true

6. R := R'

7. endwhile

8. return S \setminus R
```

- Note: can be formulated as a least fixed point computation
 - also well suited to computation with binary decision diagrams

Precomputation - Prob1

- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{<1}$ [φ_1 U φ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no} , passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S

Prob1 algorithm

```
PROB1(Sat(\phi_1), Sat(\phi_2), S^{no})
```

- 1. $R := S^{no}$
- $2. \quad done := \mathbf{false}$
- 3. while (done = false)
- 4. $R' := R \cup \{s \in (Sat(\phi_1) \setminus Sat(\phi_2)) \mid \exists s' \in R \cdot \mathbf{P}(s, s') > 0\}$
- 5. if (R' = R) then done := true
- 6. R := R'
- 7. endwhile
- 8. return $S \setminus R$

Prob 1 explanation

PCTL until – linear equations

- Probabilities Prob(s, ϕ_1 U ϕ_2) can now be obtained as the unique solution of the following set of linear equations
 - essentially the same as for probabilistic reachability

$$Prob(s,\,\varphi_1\,U\,\varphi_2) \ = \ \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s,s') \cdot Prob(s',\,\varphi_1\,U\,\varphi_2) & \text{otherwise} \end{cases}$$

• Can also be reduced to a system in $|S^?|$ unknowns instead of |S| where $S^? = S \setminus (S^{yes} \cup S^{no})$

PCTL until - linear equations

- Example: $P_{>0.8}$ [¬a U b]
- Let $x_i = Prob(s_i, \neg a \cup b)$

$$S^{no} =$$
 $Sat(P_{<0} [\neg a U b])$

$$S^{yes} = Sat(P_{\geq 1} [\neg a U b])$$

$$x_1 = x_3 = 0$$

$$x_4 = x_5 = 1$$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

$$Prob(\neg a \cup b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

$$Sat(P_{>0.8} [\neg a \cup b]) = \{ s_2, s_4, s_5 \}$$

PCTL Until - Example 2

- Example: $P_{>0.5}$ [$G \neg b$]
- Prob(s_i , $G \neg b$) = 1 - Prob(s_i , $\neg (G \neg b)$) = 1 - Prob(s_i , F b)
- Let $x_i = Prob(s_i, Fb)$

 $Sat(P_{>0.5} [G \neg b]) = \{s_1, s_3\}$

$$x_3 = 0$$
 and $x_4 = x_5 = 1$
 $x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$
 $x_1 = 0.6x_3 + 0.4x_0 = 0.4x_0$
 $x_0 = 0.1x_1 + 0.9x_2 = 5/6$ and $x_1 = 1/3$
 $Prob(G \neg b) = 1 - x = [1/6, 2/3, 1/9, 1, 0, 0]$

$$S^{no} = Sat(P_{<0} [F b])$$

$$S^{yes} = Sat(P_{\geq 1} [F b])$$

Linear equation systems

- Solution of large (sparse) linear equation systems
 - size of system (number of variables) typically O(|S|)
 - state space S gets very large in practice
- Two main classes of solution methods:
 - direct methods compute exact solutions in fixed number of steps, e.g. Gaussian elimination, L/U decomposition
 - iterative methods, e.g. Power, Jacobi, Gauss-Seidel, ...
 - the latter are preferred in practice due to scalability
- General form: $\mathbf{A} \cdot \mathbf{\underline{x}} = \mathbf{\underline{b}}$
 - indexed over integers,
 - i.e. assume $S = \{ 0,1,...,|S|-1 \}$

$$\sum_{i=0}^{|S|-1} \mathbf{A}(i, j) \cdot \underline{x}(j) = \underline{b}(i)$$

Iterative solution methods

- Start with an initial estimate for the vector $\underline{\mathbf{x}}$, say $\underline{\mathbf{x}}^{(0)}$
- Compute successive (increasingly accurate) approximations
 - approximation (solution vector) at k^{th} iteration denoted $\underline{\mathbf{x}}^{(k)}$
 - computation of $x^{(k)}$ uses values of $x^{(k-1)}$
- Terminate when solution vector has converged sufficiently
- Several possibilities for convergence criteria, e.g.:
 - maximum absolute difference

$$\max_{i} \left| \underline{x}^{(k)}(i) - \underline{x}^{(k-1)}(i) \right| < \varepsilon$$

maximum relative difference

$$\max_{i} \left(\frac{|\underline{x}^{(k)}(i) - \underline{x}^{(k-1)}(i)|}{|\underline{x}^{(k)}(i)|} \right) < \varepsilon$$

Jacobi method

Based on fact that:

$$\sum_{j=0}^{|S|-1} \mathbf{A}(i,j) \cdot \underline{x}(j) = \underline{b}(i)$$

can be rearranged as:

$$\underline{x}(i) = \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}(j)\right) / \mathbf{A}(i, i)$$

yielding this update scheme:

$$\underline{x}^{(k)}(i) := \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i,j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i,i)$$

Gauss-Seidel

The update scheme for Jacobi:

$$\underline{x}^{(k)}(i) \ := \ \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i,j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i,i)$$

- can be improved by using the most up-to-date values of <u>x</u>^(j) that are available
- This is the Gauss-Seidel method:

$$\underline{x}^{(k)}(i) \ := \ \left(\underline{b}(i) - \sum_{j < i} \mathbf{A}(i,j) \cdot \underline{x}^{(k)}(j) - \sum_{j > i} \mathbf{A}(i,j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i,i)$$

Over-relaxation

- Over-relaxation:
 - compute new values with existing schemes (e.g. Jacobi)
 - but use weighted average with previous vector
- Example: lacobi + over-relaxation

$$\begin{split} \underline{x}^{(k)}(i) &:= (1-\omega) \cdot \underline{x}^{(k-1)}(i) \\ &+ \omega \cdot \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i,j) \cdot \underline{x}^{(k-1)}(j) \right) / \mathbf{A}(i,i) \end{split}$$

• where $\omega \in (0,2)$ is a parameter to the algorithm

Comparison

- Gauss-Seidel typically outperforms Jacobi
 - i.e. faster convergence
 - also: only need to store a single solution vector
- Both Gauss-Seidel and Jacobi usually outperform the Power method (see least fixed point method from Lecture 2)
- However Power method has guaranteed convergence
 - Jacobi and Gauss-Seidel do not
- Over-relaxation methods may converge faster
 - for well chosen values of ω
 - need to rely on heuristics for this selection

Model checking complexity

- Model checking of DTMC (S,s_{init},P,L) against PCTL formula Φ complexity is linear in $|\Phi|$ and polynomial in |S|
- Size $|\Phi|$ of Φ is defined as number of logical connectives and temporal operators plus sizes of temporal operators
 - model checking is performed for each operator
- Worst-case operator is $P_{\sim p}$ [$\Phi_1 \cup \Phi_2$]
 - main task: solution of linear equation system of size |S|
 - can be solved with Gaussian elimination: cubic in |S|
 - and also precomputation algorithms (max |S| steps)
- Strictly speaking, $U^{\leq k}$ could be worse than U for large k
 - but in practice k is usually small

Summing up...

- Model checking a PCTL formula φ on a DTMC
 - i.e. determine set Sat(φ)
 - recursive: bottom-up traversal of parse tree of φ
- Atomic propositions and logical connectives: trivial
- Key part: computing probabilities for $P_{\sim p}$ [...] formulae
 - $X \Phi$: one matrix-vector multiplications
 - $-\Phi_1 U^{\leq k}\Phi_2$: k matrix-vector multiplications
 - $-\Phi_1$ U Φ_2 : graph-based precomputation algorithms + solution of linear equation system in at most |S| variables
- Iterative methods for solving large linear equation systems